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THE POSSIBILITY OF DETERMINING AND USING
A NEW LOCAL HEAT TRANSFER COEFFICIENT
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Budapest 1502, Pf. 91, Hungary

[Recelted Auqust 1980 alld ill recisedform 22 Febrl/ary 1983)

Abstract-A new parameter named the physical heat transfer coefficient, hr h, can be used for characterizing the
relation between heat flux and wall temperature. The concept of hr b and its definition with the necessary
restrictions given in a local, differential form are presented. In order to apply hr h in a possible way.a relation to
the conventional heat transfer coefficient is derived for fully developed turbulent flow in a pipe or along a flat

plate. Conclusions regarding hpb measurability are also discussed.

Greek symbols
o minimum distance in ydirection, in

equation (13)
e~I,eT difTusivityfor momentum and heat,

respectively
J1 absolute viscosity
v kinematic viscosity, pip
fI fluid density
r shear stress
o temperature in coordinates (';,1/)
4> arbitrary functional, equation (10)
';,1/ transformed coordinates of x, y

Subscripts and superscripts
I value at the edge of the laminar sublayer
ph physical value

q.. = h,(Tw-1~). (1)

As for the choice of the above temperature Too, there
may be, in principle, several possibilities, and thus
difTeringvalues oih, will pertain to thcdiflercnt values of
Too. The formal difTerential quotient dq,jdTw derived
from equation (1)agrees with h, i.e.it may have differing
values. Let us examine now the process of heat transfer.
At each point of the surface such a difTerentialquotient
can be assigned to the heat transfer that can be

Tns PRESEl';T study introduces the concept of a local
heat transport parameter, "ph' defined by equation (2);
this parameter might be called the local physical heat
transfer coefficient. Its introduction is strongly mo
tivated by its independence of the temperature Too,
which cannot be stated for the conventional heat
transfer coefficient, h; The latter is defined by equation
(1)and described by the adjective 'technical' to make the
distinction clear. Although h. and "ph are rather
independent of each other, their relation in a given
boundary layer structure is unambiguously determined
by the processes governing the heat transfer. This
relation can serve anapplication of"rh' At first glance it
is easy to assume equivalence between h,and hph ; this
can be supposed by the result obtained for h, by
difTerentiating equation (1) with respect to Tw- Such a
formal equalization was made, e.g. in ref. [1]. The
difTerence between the two parameters, however, is
essential. To elucidate this their dilTerent behaviour
towards the Teo temperature can serve as a good
example. The conventional basic equation with the
technical heat transfer coefficient is

I:\lRODUCTIO:X

technical value
value at the wall
value at distance (j

dimensionless value: for velocity ( )+

= ( )/11· ; for distance ( )+ = ( ). u·[v
averaged quantity
fluctuating part of a scalar quantity or of
a vector in turbulent flow
transformed values in coordinates (';,1/)

+

•

w
s

l'iO~IE!'OCLATUR£

molecular thermal difTusivity, klpcp

local coefficient of skin friction, 2r../pll~
specific heat capacity at constant pressure
diameter of tube
gravitational constant
technical and physical local heat transfer
coefficients
heat conductivity
constant, equation (22)
thickness of laminar sublayer
molecular Prandtl number, via
turbulent Prandtl number, i:~JCT

heat flux (per unit area)
wall heat flux
Reynolds number, uooDlv or lI""xlv
temperature
wall temperature
temperature afTected to a negligible extent
by heat transport. Temperature outside
the boundary layer for a flat plate, mean
temperature in a pipe
velocity component in x direction
velocity component at Too
friction velocity, J(r..lp)
velocity component in y direction
coordinates, x in axis direction

u

u""
u·
v
x,Y

a
c,
cp

D

9
h"h ph
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interpreted as the heat transfer reactivity or sensitivity
with the notation hph :

(2)

The value of hph can be determined from the response
given to a minute steady-state change either of T; or of
qw. The differential quotient dq".fdTwobtained in this
way is not sensitive to the choice of T.". However, the
variations of both qwand T; must be of zero-order and
the additional heat penetration dqw into the boundary
layer must have a direction identical to that of qw.

This paper is intended to determine the relationship
between h,and hp h for the case of a turbulent flow of air
along a flat plate or in a pipe.

pipe flow from the laminar sublayer (y+ = 10) through
the buffer layer to the turbulent core (y+ = 200). For a
flat plate in fully developed turbulent flow,equation (7)
with the Fulachier temperature profile [4] and the
Blasius-Nikuradze universal velocity law [2] will be
satisfied within 5% from y + = 10 to 200. In the
developing area with the temperature and velocity
profiles of ref.[5] the deviation isabout 9% between y+
= 30 and 200. The above deviations are acceptable,
thus equation (7) will be accepted in the interval from
the laminar sublayer to the turbulent core.

After this preparation integrate equations (3)from 0
to y:

(8)

PRELIMINARY EQUATIO;-\S (9)

(10)

Iy T(y)q(y) P -
_---"'-'-'-c::....:..._ dy = - II.

o [v+e~b')]q(y) g

Applying again the hypothesis of Prandtl to the
constancy of T/q, a coefficient <J«: can be factored
from the LHS of equation (9). Divide now equation (8)
by equation (9)and denote the quotient of the integrals
obtained in this way by the functional I/4>(y). The
reduction will yield

kg
- = c g if Pr = 1 and Pr, = 1,
Jl p

(y is arbitrary).

Based on the reasoning made with equation (3), the
functional r/J(y) can be characterized by the following
relationship:

kg
if y« I,

Jl

o» if y is in the buffer layer,
¢(y) =

if y » I and Pr. = 1,
(11)

cpO

(4)

(3)
P dil

T = -(v+eM)-d'o y

The Prandtl-Taylor analogy will be used to relate hph

and li•.In its further use let us recall the derivation of the
interrelation between the velocity and temperature
distributions [2]. For parallel flow over an isothermal
flat plate heat flux, q, and shear stress, T, can be
expressed as

where eT and eM can be neglected in the laminar
sublayer, while a and v can be neglected in the turbulent
layer.

According to the Prandtl analogy, the relation q/T
remains constant in the whole width of the boundary
layer. Integration of equations (3)-neglectingeMand eT

in the laminar sublayer and a and v in the turbulent
layer, and assuming Pr, = e~JeT = 1, and omitting the
buffer layer, will yield

q kg 1;-Tw

(6)

(5)

(7)

dqw = ¢(y)rw (1- d't{Y»). (12)
dt; il(Y) dt;

The above equation can be a bridge between h,and
hph ' The differential quotient d 'l'jd T; appearing on the
RHS of equation (12) can be given a physical
interpretation, namely in a place y it means the relative
sensitivity of the temperature to the change of the
surface temperature. In other words, dT/dTw charac
terizes the penetration of the disturbance coming from
the surface. It has to be stipulated that the heat
penetration in question starts from the surface in the
direction identical with that of qw. £5 shall mean the

From equation (to), by formal differentiation, re
garding T as a function of Tw, the following expression
can be obtained:

Tw-'t(y) Pr

Tw-T", [lIoc/lI(y)]+Pr-I'

In fact, the above relationship, as can beseen from the
experimental results of ref. [3], is valid with a
discrepancy of8% for air in a fully developed turbulent

Equalizing the RHS of equations (4) and (5), and
applying 1; = 'IJ, li, = iij, some reduction will give

Tw-'IJ Pr
Tw-'ic" = (lI oc/il.)+Pr-l·

Although the above equation has been obtained for a
distance I, it is convenient to apply it to an arbitrary
coordinate y:
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(13)

(IS)

minimum y for which dT/dTw = 0, i.e.

s = min y, {d:~) = o}.
With the above y, which is the penetration depth of the
local heat transfer, the LHS of equation (12) can be
regarded as equal to the physical heat transfer
coefficient hph, i.e.

1 _ ¢(~)rw
Iph - il(~) . (14)

With the use of equations (1), (10), (12) and (14), and
applying relationship (7), two different forms of the
equation expressing the relationship between h,and hp h

will be obtained:

h, Tw-'l:J Pr
hp h = Tw - I '.x, = (i1 cx:/uJ)+ Pr- I '

turbulent heat flux in term (a) does not appear even in
the heat balance equation of ref. [6] examining the
dispersion ofa point source, and thus it can presumably
be neglected as well. In the present case, however, it is
favourable to keep term (a) for the penetration to be
estimated without the numerical solution of the
differential equation. In term (b) the turbulent heat
flux V'T', expressed by the eddy diffusivity, equals
-CT aIlay. It ispractical to express the heat flux 11''1'' by
using the ratio of the streamwise and the cross-stream
heat flux II'T /v'T'. According to the experimental re
sult of ref. [4] this quotient in the vicinity of the wall
can be predicted between -1.5 and - 2.2. Both for
homogeneous shear flow and near-wall turbulence
according to ref. [8], the quotient in question is about
-1.8. Accepting this latter value and considering its
constancy in the turbulent layer, one obtains for the
turbulent flux in term (a)

PEl'iETRATrON DEPTH OF TIlE LOCAL
HEAT TRAl'ISFER

Terms (a) and (c) are neglected even when the
temperature is a step-changcfunction, e.g. ref. [3]. Thus
term (c) can be omitted. The partial derivative of the

The question to be answered is how deep the heat
penetrates from a surface point into the boundary
layer? It is reasonable to consider the case of the
isothermal flat plate when the penetration is per
pendicular to the surface. The problem differs from the
examination ofscalardispersion ofpoint or line sources
(e.g. ref. [6]), since in the present case strictly isothermal
conditions have been stipulated. It is desirable, in
addition, to reckon with heat conduction in the
streamwise direction in the laminar sublayer, since
definition (2) includes only heat penetration in the
direction perpendicular to the wall. In the turbulent
sublayer, however, the heat flux in the x direction is
permitted,as the heattransport there is not governed by
the temperature gradient.

The object is to find estimation limits for the
penetration depth ~. To estimate the maximum value,
one may examine the effect ofa line source in a direction
crossing the flow instead of a point source, for in this
way the problem is reduced to a two-dimensional one.
The examination of the solution of the differential
equations governing the phenomenon may lead to a
result. Thedifferent sections ofthe boundary layer must
be handled separately, and it is practical to start from
outside the turbulent layer.

With the usual simplifications, for two dimensions,
the time-smoothed heat balance equation will be [7] :

et er
i1-+v-ax ay

a a k a2T k aFf'
= --II''l''--v'T'+--+--. (16)ax ay cpP ax2 cpP ay2

[ 1 (i/+ -+ ceT )J* 00++ -- -+v -- -=0
1.8eT/~' 1.8 ay+ a,/+ .

(20)

(19)

(17)l1T= - 1.81:r aIlay.

1
~=x, I/=y+-x.

1.8

The transformation of T(x,y) into O(x,y) results in a
second-order partial differential equation of hyperbolic
type (HPDE).

Turning to the dimensionless values of temperature,
velocity and distance:

a
2o+ [il+ J* 20+-,...-----:- + --- --

a~ + a,/ + 1.81:r/v a~ +

After substitution and reductions, neglecting the
molecular heat transport in the turbulent zone, one will
obtain for equation (16):

et ( '01:) er a21' a21'
il-;-+ v-~ -;-= -1.8I:T -a " +CT-2• (18)

ox uy uy X uy ay

The above equation can be brought to canonic form by
the characteristic transformation below:

When estimating the penetration into the turbulent
boundary layer, it is practical to give, as a boundary
condition of HPDE equation (20), temperature T and
the derivative aT/ay on a section parallel to the x axis.
This derivative can be calculated from the heat flux in
the y direction, provided that no heat flux in the x
direction is supposed.

The coordinate system ';,11 should be displaced into
the turbulent boundary layer, keeping the ~ axis parallel
to the wall. The boundary condition in this case means
prescription of 0+ and 00+/a,( on an X-length
section of line ~+ = 1.81/+ (see Fig. I). This is exactly the
Cauchy problem relating to equation (20), which,
according to the theoryofHPDE, has a unique solution
within the hatched area of Fig. 1.Thus, the disturbance
starting from bound X penetrates to the depth of y

(d)(c)(b)(a)
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x·

y'
1\'

FIG. t. The transformed coordinate system and the area
(hatched) within which the unique solution is ensured by the

boundary conditions stated for section X.

= y; it follows that from a section of size dx the
penetration is of zero order.

In the laminar boundary layer the penetration is
governed by physical processes and equations of quite
another type. After omission of terms (a) and (c) in
equation (16), the equation of the conservation of heat
will be of the parabolic type. Accordingly, the
penetration is infinite, although its intensity may
strongly decrease with the distance increasing from the
wall. In accordance with all that has been discussed in
connection with equation (20), only the y-direction
disturbance and not the x-direction dispersion has to
be considered. The penetration depth of this must be
larger than the laminar sublayer thickness . Continuing
this idea, it willbe found that the penetration may run at
most to the remaining traces of molecular heat
transport, i.e. to the outermost edge of the buffer layer.
Thus, the limits of the buffer layer can be stated as an
estimation for ()" . For turbulent flow both over a flat
plate and in a circular pipe, according to the usual
choice for the buffer layer limits found in ref. [9], one
can write

(22),and with the interpretation and explanation of the
definition of hp h from the viewpoint of applications. A
few words will be said also about earlier spontaneous
applications of hph hidden in the disguise of h,.

(I) According to relationship (22), as an example
with a Reynolds number Re = lOS, for a smooth pipe
and air (Pr = 0.73), the relation hJhph is 0.51 ±0.07.
Thus, h, and hp h may considerably differ from each
other. Owing to the wide estimation interval for K in
equation (22) relationship (22) has an uncertainty
around 10%.This error, however, does not appear very
serious considering that a difference of about 100%
between the two heat transfer coefficients was obtained
in the above example.

(2) The dqw in definition (2) is not identical with the
total additional heat flux originating from a point heat
source on the surface, since no dispersion is permitted.
Such a choice of the definition appeared to be practical,
for in this way the difference between the mean value
relative to a small finite surface element and a local
value of hph is not very large. With simplification to two
dimensions again , the mean value of hph relative to a
surface element of size fix gets modified only because of
the change of the penetration, provided that the
relation iioc/iiJ in the x direction is constant. Through
the derivation of relationship (22), provided that the
penetration depth changes with the increase of fix
according to Fig. I, one can obtain the relation
hpJn;;JlUf, i.e. the ratio of a local and a mean physical
heat transfer coefficient; the latter relates to a finite
surface element fix around the local point. Choosing
the lower and upper limits of ()+ in equation (21), the
functions (curves a and b, respectively) shown in Fig. 2
can be obtained, e.g.for three different Re numbers.The
maximum incre ase of penetration together with the
increase of fix on the basis of Fig. I, is possible, but it is
not inevitable, in fact not even likely. In the other

where II < K < 14,belonging to the estimation limits
of () + in equation (21).

D1SCUSSIO;-';

The following sections will deal with the importance
of distinguishing between h,and hp h by using equation

la' 102.100

I.B
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FIG.2. The lower and upper estimation limits of the ratio ofhp b

to the average hpb(&x +)relative to section d X· containing the
point. Curves a, o·= 5 ; curves b, o· = 30 and with the
change of penetration depth (PO) according to Fig. 1 ;cur ve c,
with constant PO; curve d, with the change of PO identical
with the development ofthe thermal boundary layer measured

by Antonia et al. [4].

a

(22)

(21)5 < ()+ < 30.

FORMULA OF THE RELATION hJh ph

In turbulent flow in a pipe or along a flat plate, for
hydraulicallysmooth surfaces, the velocity relationship
of equation (IS) can be connected to the local skin
friction coefficient c/. For both cases the result can be
obtained in a similar way, according to the procedure
presented in Chapter XX of ref. [2], with the
assumption ofBlasius' velocity profile and utilization of
relationship (21). The final result of both cases will be

h. Pr

hph = [1/KJ(I/2c/)]+Pr-I'
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extreme case penetration depth can be considered
constant, so the ratio in question is a unit also drawn in
Fig. 2(curve c).To look for some agreement in literature
the change of penetration depth should be considered
identical with the change of turbulent thermal
boundary layer thickness obtained for step change
boundary condition, e.g. by ref. [4]. The ratio in
question can be calculated by the procedure mentioned
before; when calculating the local hph and the average
~ (j+ = 5 and (j+ converted from the above
mentioned ref. [4] were considered, respectively. The
ratio is also drawn in Fig. 2 (curve d). This latter curve
convincingly falls between the marked lower and upper
limits.

(3) Concerning the measurement of the local hph, the
result given in Fig. 2 has a convenient consequence. On
a finite surface element ofsize Llx, i.e. of the same order
as the thickness I of the laminar boundary layer, dqw(x)
can probably be manipulated to have only a
perpendicular heat flux component in the centre of the
surface element. Ofcourse, the heat penetration can be
decisively influenced in the laminar boundary layer
only, where the heat penetration is governed by the
temperature gradient. In the turbulent layer the
penetration with the assumed conditions is not affected
by the prehistory of the flow approaching the place in
question, and the dispersion will be restricted to the
hatched area of Fig. 1.

Thus in the centre ofa compensating surface element
of size Llx, the local hp h can be obtained, according to
Fig. 2, with a probably overestimated uncertainty of
about 7% caused by a possible increased penetration at
the value ofLlx+ = 10. This paper cannot deal with the
techniques of measurement and with further refine
ments possible in principle.

(4) The hph as a boundary condition does not appear
very convenient with the precise application of the
assumed conditions. .Practice and further theoretical
examinations are needed to decide what simplifications
can be permitted. It is possible, e.g. to neglect the
dispersion ofedges in the mean n;relative to a certain
finite surface element, to suppose a constancy of the
penetration depth (j+ or to relax the prescription that
dqw and dTwbe of zero-order.

(5) Finally, a few words on earlier spontaneous
applications. In addition to ref. [1] mentioned in the
Introduction, it is possible that the results of several
local heat transfer measurements furnished, in fact, not
the expected h.but-with the concessions mentioned in
(4)-the values of hph' A hph-Iike result instead of the
expected li, must have been obtained by ref. [10],
although its results cannot be regarded as local physical
heat transfer coefficients, because the results may be
distorted, owing to the surface dimensions of the probe.

In addition to the foregoing, measurements of any
forced heat transfer in so-called unheated systems using
a small-size measuring area (electrical gauge or some
other device) are very likely to be measurements of the
physical heat transfer coefficient.
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LA POSSIBILITE DE DETERMINER ET D'UTILISER UN NOUVEAU COEFFICIENT DE
TRANSFERT THERMIQUE LOCAL

Resume-Un nouveau pararnetre appele coefficient physiquede transfert thermique hph, peut etre utilisepour
caracteriser la relation entre Iefluxde chaleuret la temperature parietale,Leconcept hph et sa definitionavecles
restrictions necessairessont presenteedans une formedifferentielle locale.De faconaappliquer hph on etablit
une relation avecIecoefficient de transfert conventionnelpour l'ecoulement turbulent pleinementetabli dans
un tube ou Ie long d'une plaque plane. Des conclusions sur l'accesala mesure de hph sont aussi presentees.
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DIE MOGLICHKEIT EINEN NEUEN ORTLICHEN WARMEOBERGANGSKOEFFIZIENTEN
ZU BESTIMMEN UND ZU VERWENDEN

Zusammenfassung-Ein neuer Parameter mit der Bezeichnung "physikalischer Warmeubergangs
koeffizient", hph, kann zur Charakterisierung des Zusammenhanges zwischen Warmestromdichte und
Wandtemperatur verwendet werden, Das Konzept und die Definition von hph unter Beriicksichtigung der
erforderlichen Einschrankungen in lokaler, difTerentieller Form werden dargestellt.

Urn eine Miiglichkeit der Anwendung von hph zu veranschaulichen, wird eine Beziehung zu dem
konventionellen Wdrmeubcrgangskoeffizienten fur voll ausgebildete turbulente Striimung in einem Rohr
bzw. an einer ebenen Platte abgeleitel. Schlu13folgerungen bcziiglich der MeBbarkcit worden ebenfalls

diskutierl.

B03MO)KHOCTb OnPE.LlEJlEHlUI H IICnOJlb30BAHlUI HOBOrO JlOKAJlbHOrO
K03<1><1>IIUHEHTA TEnJlOnEPEHOCA

AIIIIOTaUHH-HoBblii napaxrerp, nony-uraunn! naraaunc epIlJII'IeCKOrO KOJepePlIUllellTa rennonepeuoca,
hph , MO;KlIO IIcnO,lh30BaTh JL,111 onpenenennx COOTIIOlllCllIlll Me;Kny Be.ll1'11111011 TcnnOBoro 1l0TOKa II
rcxmcparypoti CTeIlKIl . .Llallo onpeneneuue nonarus hph II B .10KaJlhIlO~1 nllePePepelllUlaJlhllO~1 anne
npnaenenu npncyume JTO~IY napaxierpy orpamr-rcuns. .Ll.l11 ncno.uoosauna KOJqlePllUllellTa hph

auueneuo ero COOTIIOWelllle c 06bl'lllhl~1 KOJcjJePlIUllellTml 'rennonepenoca .lUll nO.ll10CThlO paJBIITOrO
'rypfiynenrnoro Te'lCIIIIlI B Tpy6e 11.111 anorn, nnocxoii nnacnuna. Paccsrorpenu TaK;Ke cnocofisr

mxrepenna hp h '




