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Abstract— A new parameter named the physical heat transfer coefficient, i, can be used for characterizing the

relation between heat flux and wall temperature. The concept of h, and its definition with the necessary

restrictions given in alocal, differential form are presented. In order to apply i, ina possible way, arelation to

the conventional heat transfer coefficient is derived for fully developed turbulent flow in a pipe or along a flat
plate. Conclusions regarding h,, measurability are also discussed.

NOMENCLATURE

a molecular thermal diffusivity, k/pc,,

s local coeflicient of skin friction, 27, /pt2,

cp specific heat capacity at constant pressure

D diameter of tube

g gravitational constant

h,h,, technical and physical local heat transfer
coefficients

k heat conductivity

K constant, equation (22)

{ thickness of laminar sublayer

Pr molecular Prandtl number, v/a

Pr, turbulent Prandtl number, £y/eq

q heat flux (per unit area)

qw wall heat flux

Re Reynolds number, uD/v or ux/v

T tempcrature

T. wall temperature

Ty temperature affected to a negligible extent
by heat transport. Temperature outside
the boundary layer for a flat plate, mean
temperature in a pipe

u velocity component in x direction

Uy velocity component at T,

u* friction velocity, \/(t./p)

v velocity component in y direction

X,y coordinates, x in axis direction

Greek symbols

o minimum distance in y direction, in
equation (13)

&gy diffusivity for momentum and heat,
respectively

u absolute viscosity

v kinematic viscosity, u/p

P fluid density

T shear stress

0 temperature in coordinates (&, 1)

¢ arbitrary functional, equation (10)

én transformed coordinates of x, y

Subscripts and superscripts
i value at the edge of the laminar sublayer
ph physical value

t technical value
W value at the wall
) value at distance 6

dimensionless value: for velocity ()*

= ()/u*; for distance ()* = ()-u*/v
averaged quantity

fluctuating part of a scalar quantity or of
a vector in turbulent flow

* transformed values in coordinates (&, 1)

INTRODUCTION

Tue PReSENT study introduces the concept of a local
heat transport parameter, Iy, defined by equation (2);
this parameter might be called the local physical heat
transfer coeflicient. Its introduction is strongly mo-
tivated by its independence of the temperature T,
which cannot be stated for the conventional heat
transfer coefficient, h,. The latter is defined by equation
(1)and described by the adjective ‘technical’ to make the
distinction clear. Although h, and h,, are rather
independent of each other, their relation in a given
boundarylayerstructureis unambiguously determined
by the processes governing the heat transfer. This
relation canserve an application of . At first glance it
is easy to assume equivalence between h, and 1, ; this
can be supposed by the result obtained for h, by
differentiating equation (1) with respect to T,. Such a
formal equalization was made, e.g. in ref. [1]. The
difference between the two parameters, however, is
essential. To elucidate this their different behaviour
towards the T temperature can serve as a good
example. The conventional basic equation with the
technical heat transfer cocfficient is

q, = WT—T.). )

As for the choice of the above temperature T, there
may be, in principle, several possibilities, and thus
differing values of b, will pertainto the different values of
T,. The formal differential quotient dq,/dT,, derived
fromcquation(1)agrees with h,,i.e.itmay have differing
values. Let us examine now the process of heat transfer.
Ateach point of the surface such a differential quotient
can be assigned to the heat transfer that can be
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interpreted as the heat transfer reactivity or sensitivity
with the notation Jy:

_ dg,

o = g7 )

The value of i1, can be determined from the response
given to a minute steady-state change either of T, or of
q.- The differential quotient dq,/dT, obtained in this
way is not sensitive to the choice of T,.. However, the
variations of both g,, and T,, must be of zero-order and
the additional heat penetration dg,, into the boundary
layer must have a direction identical to that of q,.

This paper is intended to determine the relationship
between /i and Iy, for the case of a turbulent flow of air
along a flat plate or in a pipe.

PRELIMINARY EQUATIONS

The Prandtl-Taylor analogy willbe used torelate i,
and h. Inits further uselet us recall the derivation of the
interrelation between the velocity and temperature
distributions [2]. For parallel flow over an isothermal
flat plate ‘heat flux, g, and shear stress, 7, can be
expressed as

dT
q = pclater) d_y’
i 3)
L
t=L el T
g dy

where & and &, can be neglected in the laminar
sublayer, while a and v can be neglected in the turbulent
layer.

According to the Prandtl analogy, the relation g/t
remains constant in the whole width of the boundary
layer.Integration of equations(3)—neglectinge, and er
in the laminar sublayer and a and v in the turbulent
layer, and assuming Pr, = ey /er = 1, and omitting the
buffer layer, will yield

a_khi-T, @
T 1
PRI tak: 3 )
T iy —il,,
Equalizing the RHS of equations (4) and (5), and
applying 7, = T, u, = 11, some reduction will give

T,—-T _ Pr
T.—T, G /i)+Pr—1

(©)

Although the above equation has been obtained for a
distance /, it is convenient to apply it to an arbitrary
coordinate y:

T, —T(y) _ Pr
T,—T, [d./a]+Pr—1"
Infact,theaboverelationship,ascanbeseenfromthe

experimental results of ref. [3], is valid with a
discrepancy of 8% for air in a fully developed turbulent
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pipe flow from the laminar sublayer (¢ * = 10) through
the buffer layer to the turbulent core (y* = 200). For a
flat plate in fully developed turbulent flow, equation (7)
with the Fulachier temperature profile [4] and the
Blasius—Nikuradze universal velocity law [2] will be
satisfied within 5% from y* =10 to 200. In the
developing area with the temperature and velocity
profiles of ref. [ 5] the deviationisabout 99 between y™*
= 30 and 200. The above deviations are acceptable,
thus equation (7) will be accepted in the interval from
the laminar sublayer to the turbulent core.

After this preparation integrate equations (3) from 0
toy:

’_a0) ;
———d()) = T-T), 8
LHTO,) 0) = pe(T—T) ®

J’ 0a) 4 e )

o v Hen0N1a0) g

Applying again the hypothesis of Prandtl to the
constancy of t/q, a coefficient z,/q,, can be factored
from the LHS of equation (9). Divide now equation (8)
by equation (9) and denote the quotient of the integrals
obtained in this way by the functional 1/¢(y). The
reduction will yield

T,—T
B _ gy 20

10
i(y) (19

Based on the reasoning made with equation (3), the
functional ¢(y) can be characterized by the following
relationship:

k
Yoy«
yi

f{y) if yis in the bufler layer,

¢ = 1y
¢,g ify»land Pr,=1, (
k
—g=cpg if Pr=1and Pr,=1,
L H

(y 1s arbitrary).

From equation (10), by formal differentiation, re-
garding T as a function of T, the following expression
can be obtained:

dg. _ 406, (1

T dT, (12

dT,  a(y)

The above equation can be a bridge between h, and
b The differential quotient dT/dT,, appearing on the
RHS of equation (12) can be given a physical
interpretation, namely in a place y it means the relative
sensitivity of the temperature to the change of the
surface temperature. In other words, dT/d T, charac-
terizes the penetration of the disturbance coming from
the surface, It has to be stipulated that the heat
penetration in question starts from the surface in the
direction identical with that of g,. § shall mean the

d ’7(}*))
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minimum y for which dT/dT,, = 0, i.e.

é = min y, {df’]@) = 0}.

(13)

With the above y, which is the penetration depth of the
local heat transfer, the LHS of equation (12) can be
regarded as equal to the physical heat transfer
coefficient hy,, i.e.
(),

hy= . 14

" T (o) 44)
With the use of equations (1), (10), (12) and (14}, and
applying relationship (7), two different forms of the
equationexpressing the relationship betweenh,and i,
will be obtained:

h  T,-T Pr
hyw Tu=T, (i f@)+Pr—1

(15)

PENETRATION DEPTH OF THE LOCAL
HEAT TRANSFER

The question to be answered is how decp the heat
penctrates from a surface point into the boundary
layer? It is reasonable to consider the case of the
isothermal flat plate when the penetration is per-
pendicular to the surface. The problem differs from the
examination ofscalar dispersion of point orline sources
(c.g.ref.[6]), sincein the present casesstrictly isothermal
conditions have been stipulated. It is desirable, in
addition, to reckon with heat conduction in the
streamwise direction in the laminar sublayer, since
definition (2) includes only heat penctration in the
direction perpendicular to the wall. In the turbulent
sublayer, however, the heat flux in the x direction is
permitted,astheheattransport thereisnot governed by
the temperature gradient.

The object is to find estimation limits for the
penetration depth 4. To estimate the maximum value,
onemay examine theeffect ofa line source inadirection
crossing the flow instead of a point source, for in this
way the problem is reduced to a two-dimensional one.
The examination of the solution of the differential
equations governing the phenomenon may lead to a
result. Thedifferent sections of the boundary layer must
be handled separately, and it is practical to start from
outside the turbulent layer.

With the usual simplifications, for two dimensions,
the time-smoothed heat balance equation will be [7]:

1757"_*_567‘
Ox dy
o . 0., k& k &T
I r A TSI T
Bxul dy c,p 8x2+cpp oy? (16)
(a) (b) (© (d)

Terms (a) and (c) arc neglected even when the
temperaturcis astep-change function, e.g. ref.[3]. Thus
term (c} can be omitted. The partial derivative of the
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turbulent heat flux in term (a) does not appear even in
the heat balance equation of ref. [6] examining the
dispersion ofa point source, and thusit can presumably
be neglected as well. In the present case, however, it is
favourable to keep term (a) for the pencetration to be
estimated without the numerical solution of the
dilferential equation. In term (b) the turbulent heat
flux U'T’, expressed by the eddy diflusivity, equals
—e&r 0T)0y. Itis practical to express the heat flux’ T by
using the ratio of the streamwise and the cross-stream
heat flux 'T°/0’T". According to the experimental re-
sult of ref. [4] this quotient in the vicinity of the wall
can be predicted between —1.5 and —2.2. Both for
homogeneous shear flow and near-wall turbulence
according to ref. [8], the quotient in question is about
—1.8. Accepting this latter value and considering its
constancy in the turbulent layer, one obtains for the
turbulent flux in term (a)

WT = — 1.8, 8T/dy. (17

After substitution and reductions, neglecting the
molecular heat transport in the turbulent zone, one will
obtain for equation (16):
_07‘+ _ “éer\oT 18 T 4 T
V—— | —= — 18— +¢
dy Toxoy ' ¥

u E ay EyT.

The above equation can be brought to canonic form by
the characteristic transformation below:

(18)

1
N=y+-—x (19)

¢=x 18

The transformation of T(x, y) into 0(x, y) results in a
second-order partial differential equation of hyperbolic
type (HPDE).

Turning to the dimensionless values of temperature,
velocity and distance:

a0+ & oot
& o [1.85.,/»] £

1 at o, ler\|*é0*
_{ — P — —— —=0

* I:I.SET/v (1.8 +o ay*>:| oyt
(20)

When estimating the penetration into the turbulent
boundary layer, it is practical to give, as a boundary
condition of HPDE equation (20), temperature T and
the derivative dT/dy on a section parallel to the x axis.
This derivative can be calculated from the heat flux in
the y direction, provided that no heat flux in the x
direction is supposed.

The coordinate system &, 5 should be displaced into
the turbulent boundary layer, keeping the £ axis parallel
to the wall. The boundary condition in this case means
prescription of 0% and é0%/éy* on an X-length
section of line £* = 1.85* (see Fig. 1). This is exactly the
Cauchy problem relating to equation (20), which,
accordingtothetheory of HPDE, hasauniquesolution
within the hatched area of Fig. 1. Thus, the disturbance
starting from bound X penetrates to the depth of y
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F16. 1. The transformed coordinate system and the area
(hatched) within which the unique solution is ensured by the
boundary conditions stated for section X.

= Y; it follows that from a section of size dx the
penetration is of zero order.

In the laminar boundary layer the penetration is
governed by physical processes and equations of quite
another type. After omission of terms (a) and (c) in
equation (16), the equation of the conservation of heat
will be of the parabolic type. Accordingly, the
penetration is infinite, although its intensity may
strongly decrease with the distance increasing from the
wall. In accordance with all that has been discussed in
connection with equation (20), only the y-direction
disturbance and not the x-direction dispersion has to
be considered. The penetration depth of this must be
larger than the laminar sublayer thickness. Continuing
thisidea, it willbe found that the penetration may run at
most to the remaining traces of molecular heat
transport, i.c. to the outermost edge of the buffer layer.
Thus, the limits of the buffer layer can be stated as an
estimation for §*. For turbulent flow both over a flat
plate and in a circular pipe, according to the usual
choice for the buffer layer limits found in ref. [9], one
can write

5< 6 < 30. @1

FORMULA OF THE RELATION h/h,

In turbulent flow in a pipe or along a flat plate, for
hydraulically smooth surfaces, the velocity relationship
of equation (15) can be connected to the local skin
friction coefficient c,. For both cases the result can be
obtained in a similar way, according to the procedure
presented in Chapter XX of ref [2], with the
assumption of Blasius’ velocity profile and utilization of
relationship (21). The final result of both cases will be

h, _ Pr
B [UYKJ(/2¢)]+Pr—1

where 11 < K < 14, belonging to the estimation limits
of 6* in equation (21).

22

DISCUSSION

The following sections will deal with the importance
of distinguishing between h, and h_, by using equation
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(22), and with the interpretation and explanation of the
definition of h, from the viewpoint of applications. A
few words will be said also about earlier spontaneous
applications of hy,, hidden in the disguise of h,.

(1) According to relationship (22), as an example
with a Reynolds number Re = 105, for a smooth pipe
and air (Pr = 0.73), the relation h/h, is 0.511:0.07.
Thus, h, and h, may considerably differ from each
other. Owing to the wide estimation interval for X in
equation (22) relationship (22) has an uncertainty
around 10%. This error, however, does not appear very
serious considering that a difference of about 100%
between the two heat transfer coefficients was obtained
in the above example.

(2) Thedg,, in definition (2) is not identical with the
total additional heat flux originating from a point heat
source on the surface, since no dispersion is permitted.
Such a choice of the definition appeared to be practical,
for in this way the difference between the mean value
relative to a small finite surface element and a local
value of i1, is not very large. With simplification to two
dimensions again, the mean value of h, relative to a
surface element of size Ax gets modified only because of
the change of the penetration, provided that the
relation i /@7, in the x direction is constant. Through
the derivation of relationship (22), provided that the
penetration depth changes with the increase of Ax
according to Fig. 1, one can obtain the relation
hon/Pon(Ax), i.e. the ratio of alocal and a mean physical
heat transfer coefficient; the latter relates to a finite
surface element Ax around the local point. Choosing
the lower and upper limits of ¥ in equation (21), the
functions (curves a and b, respectively) shown in Fig. 2
can be obtained, e.g. for three different Re numbers. The
maximum increase of penetration together with the
increase of Ax on the basis of Fig. 1, is possible, but it is
not inevitable, in fact not even likely. In the other

Upper limit

hoh/hph (8X*)
~

lower limit

! </
100 10' 102 103
aAx?

F1G.2. The lower and upper estimation limits of the ratio of I,

tothe average h,(Ax ) relative to section Ax* containing the

point. Curves a, 6* = 5; curves b, §* = 30 and with the

change of penetration depth (PD) according to Fig. 1;curvec,

with constant PD; curve d, with the change of PD identical

with the development of the thermal boundarylayer measured
by Antonia et al. [4].
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extreme case penetration depth can be considered
constant, so the ratio in question is a unit also drawn in
Fig.2(curvec). Tolook forsomeagreementinliterature
the change of penetration depth should be considered
identical with the change of turbulent thermal
boundary layer thickness obtained for step change
boundary condition, e.g. by ref. [4]. The ratio in
question can be calculated by the procedure mentioned
before ; when calculating the local h,, and the average
hy{Ax), 6* =5 and 6% converted from the above
mentioned ref. [4] were considered, respectively. The
ratio is also drawn in Fig. 2 (curve d). This latter curve
convincingly falls between the marked lower and upper
limits.

(3) Concerning the measurement of the local k, the
result given in Fig. 2 has a convenient consequence. On
a finite surface element of size Ax, i.e. of the same order
as the thickness [ of the laminar boundary layer, dg,(x)
can probably be manipulated to have only a
perpendicular heat flux component in the centre of the
surface element. Of course, the heat penetration can be
decisively influenced in the laminar boundary layer
only, where the heat penetration is governed by the
temperature gradient. In the turbulent layer the
penetration with the assumed conditions is not affected
by the prehistory of the flow approaching the place in
question, and the dispersion will be restricted to the
hatched area of Fig. 1.

Thusin the centre of a compensating surface element
of size Ax, the local h,, can be obtained, according to
Fig. 2, with a probably overestimated uncertainty of
about 7% caused by a possible increased penetration at
the value of Ax* = 10. This paper cannot deal with the
techniques of measurement and with further refine-
ments possible in principle.

(4) The h,, asa boundary condition does not appear

very convenient with the precise application of the
assumed conditions..Practice and further theoretical
examinations are needed to decide what simplifications
can be permitted. It is possible, e.g. to neglect the
dispersion of edges in the mean h,,, relative to a certain
finite surface element, to suppose a constancy of the
penetration depth 6* or to relax the prescription that
dq,, and dT,, be of zero-order.
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(5) Finally, a few words on earlier spontaneous
applications. In addition to ref. [1] mentioned in the
Introduction, it is possible that the results of several
local heat transfer measurements furnished, in fact, not
theexpected h, but—with the concessions mentioned in
(4)—the values of Iy A hy-like result instead of the
expected I, must have been obtained by ref. [10],
althoughits results cannot beregarded aslocal physical
heat transfer coefficients, because the results may be
distorted, owing to the surface dimensions of the probe.

In addition to the foregoing, measurements of any
forced heat transferinso-called unheated systems using
a small-size measuring area (electrical gauge or some
other device) are very likely to be measurements of the
physical heat transfer coefficient.
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LA POSSIBILITE DE DETERMINER ET D'UTILISER UN NOUVEAU COEFFICIENT DE
TRANSFERT THERMIQUE LOCAL

Résumé— Un nouveau paramétre appelé coefficient physique de transfert thermique h,, peut étre utilisé pour
caractériserlarelationentrele fluxde chaleuretla température pariétale. Le concept b, et sadéfinition avecles
restrictions nécessaires sont présentés dans une forme différentielle locale. De fagon a appliquer h;, on établit
une relation avec le coefficient de transfert conventionnel pour I'écoulement turbulent pleinement établi dans
un tube ou le long d’une plaque plane. Des conclusions sur I'accés & la mesure de hy,, sont aussi présentées.
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DIE MOGLICHKEIT EINEN NEUEN ORTLICHEN WARMEUBERGANGSKOEFFIZIENTEN
ZU BESTIMMEN UND ZU VERWENDEN

Zusammenfassung—Ein neuer Parameter mit der Bezeichnung “physikalischer Wirmetibergangs-
koeffizient”, h,,, kann zur Charakterisierung des Zusammenhanges zwischen Wiarmestromdichte und
Wandtemperatur verwendet werden. Das Konzept und die Definition von h_, unter Beriicksichtigung der
erforderlichen Einschrdnkungen in lokaler, differentieller Form werden dargestellt.

Um eine Moglichkeit der Anwendung von h,, zu veranschaulichen, wird eine Bezichung zu dem
konventionellen Wiarmeidbergangskoeffizienten fiir voll ausgebildete turbulente Strdmung in einem Rohr
bzw. an einer ebenen Platte abgeleitet. SchluBfolgerungen beziiglich der MeBbarkeit werden ebenfalls

diskutiert.

BO3MOXHOCTbH ONPENENEHHA W HCINOJB30OBAHHSA HOBOI'O NOKAJIBHOTO
KO3®®HIIMEHTA TEMJIOIMEPEHOCA

Annorauns—Hosblit mapameTp, nolyunsunil Hassanue ¢udideckoro kodddiuunenta Tenmonepenoca,

Agn. MOKHO MCNIOIBL30BATH IR ONPENCICHHN COOTHOLICHHS MEKLY BEIHYHHON TEMNOBOTO NOTOKA M

Temnepatypoil crenki. Jano onpenmencune nomsrns Ay, H B [10KaibioM AndPepeHUHANBLHOM BHAE

NPHBEICHB! MPHCYLIHE 3TOMY napaMeTpy orpammtiesns. JIna ucnosessosanus koddduunenta Ay,

BBIBEIEHO €70 COOTHOLIEHHE € OObIMHBIM KO3 dHIMENTOM TErI0nepeHoca A9 NOTHOCTEIO PA3BHTOIO

TypOyaeHTHOro TeueHHA B TpyGe wnm BOOIL NIOCKOH MmacTiHBL. PaccMOTpeHbl Takxe c¢nocobbt
H3MepeHus hyy, .





